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Verification of Neural Networks

Inference in neural networks

Forward Propagation
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Verification of Neural Networks

When the input is not a single point...
Forward Propagation
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y € {f(x),x € S}
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Verification of Neural Networks

The verification problem (e.g., margin between two classes)

Does f,(%)>f,(Z) always hold?

Design an objective g for it

£,(z) 4

f1(%)
min  g(y)
st. xES

y € {f(x),x € S}
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Verification of Neural Networks

Solving the verification problem exactly

objective g% f,(Z)— f,(Z)>0

£.3) &
£.3)
min  g(y)
st. x€eS

y € {f(x),x € S}
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Verification of Neural Networks - Convex Relaxations

Solving the verification problem through convex relaxations

-\ A Does f,(Z)>f,(Z) always hold?
f2(-77)

£(3)

min  g(y)
st. xeS$S

y € Convex({f(x),x € S})
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Verification of Neural Networks - Convex Relaxations

Solving the verification problem through convex relaxations (ideal case)

£.(2) 4 objective g% f,(Z)—- f,(%)>0

min  g(y)
st. x€eS

y € Convex({f(x),x € S})
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Verification of Neural Networks - Convex Relaxations

Solving the verification problem through convex relaxations (the reality)

‘ objective g% f.(%)— f,(%)<0
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v,
o,
L0
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e
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.

Sound, but not complete
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Verification of Neural Networks - A Unified Framework

i prmaiVier_______ . Original problem:
Linear Outer Bounds

‘Weaker / more relaxed

Section 3

__________ Similar strength min g(y)
st. xe$S
Dual View
y € {f(5)}

Convex relaxed:

min  g(y)
st.xeS

y € Convex({f(S)})

@ Many verification methods can be seen in a unified framework as
convex relaxations of the original non-convex verification problem

“A convex relaxation barrier to tight robustness verification of neural networks”, Hadi Salman,
Greg Yang, Huan Zhang, Cho-Jui Hsieh and Pengchuan Zhang, arXiv 1902.08722
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Verification of Neural Networks - “Greedy” Solvers

@ Even solving the convex-relaxed problem can still be expensive; many
“greedy” solvers are proposed (Neurify w/o BaB, CROWN, Fast-Lin,
DeepZ, DeepPoly)

@ These greedy solvers give linear outer bounds of NN w.r.t. all inputs
xo+Ax € S: AlAx+ by < f(xo + Ax) < AyAx + by

@ For example, one dimensional case, £, ball at xp with radius &:

Llnear upper bound

“A convex relaxation barrier to tight robustness verification of neural networks”, Hadi Salman,

Greg Yang, Huan Zhang, Cho-Jui Hsieh and Pengchuan Zhang, arXiv 1902.08722
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Verification of Neural Networks

In RecurJac, we use a different kind of bound: the Local Lipschitz constant
based verification bound

Llnear upper bound

Slope £L: Local Lipschitz constant
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Local Lipschitz Constant based Bounds

@ A local Lipschitz constant is a scalar L, s that satisfies
lg(x1)—g ()| < Lpslxi—xalp, for all x1,x2 € 5 := {x|[|[x — xol[p < &}

@ We can lower bound a function g(x) for all x € S by its local Lipschitz
constant L, s:

g(x) > g(x0) — Lp,sllx — xollp

e For example, g(x) = fi(x) — f2(x) (margin) as we showed before

$objective g(z)=f,(z)— f,(z)

e,
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Verification of Neural Networks

Lipschitz constant is closely related to gradients. We thus look into the
back-propagation in neural networks

Forward Propagation

A point ® 5=($1,$2)

Output is a
% % { )smgle point
j=|0z Oz, ” ” f2(:vl,m2)
of, of,
oz, O,

Backward Propagation

Jacobian matrix
w.r.t. input
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Verification of Neural Networks

Verification problem for Jacobian/Gradients

Output is a set

Any X inside

the box
Jacobian has
element-wise
upper/lower bounds

ofi of
L, L1,2 oz, 0w, < U, U1,2
L, L, |0f, 0f,| Uy U,y
oz, Ouw,
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The RecurJac Algorithm

@ RecurJac gives element-wise bounds U and L for Jacobian J := V,f(x)
of input x, not network weights w (not a bound for V, f(x, w))

@ RecurJac can be applied to networks with any common activation
functions (tanh, sigmoid, etc), not limited to ReLU

@ RecurJac is polynomial time — its time complexity is O(H?n3) for a
H-layer network with n neurons per layer
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From Jacobian Bounds to Local Lipschitz Constant

@ Local Lipschitz constant can be seen as the maximum induced p—norm
of Jacobian matrix for all x € S:

[, c= J
p.S rpeagll I

e With U and L where L < Vf(x) < U for x € S, an (upper bound of)
Local Lipschitz constant can be easily obtained.

o Define matrix M with each element M;; = max(|L; [, |U; ), then

LP,S < “M”p
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The RecurJac Algorithm

@ For illustration, for a 3-layer neural network with ReLU activation o:
f(x) = WE (W g (whx))
where
WO — 1 1] we = E ﬂ wo — E —11}
o the element {j, k} in Jacobian matrix can be written as:

Jik = V60l = W QWA OwE)

where

70 70
2) _ 1) _
z()_[o ?] z()_[o ?]
@ “7" can be 0 or 1, reflecting the state of a ReLU neuron
@ We need to consider the worst case ReLU states to get bounds
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The RecurJac Algorithm

@ For illustration, for a 3-layer neural network with ReLU activation o:
f(x) = WO a(W o (WHx))

where
(3) 2 11 (1) 1 -1

o the element {j, k} in Jacobian matrix can be written as:

ik = [V = W}f)z(z)w(2>z(1>w_(1k)

)

where

70 70
2) _ 1) _
z()_[o ?] z()_[o ?]
@ “7" can be 0 or 1, reflecting the state of a ReLU neuron
@ We need to consider the worst case ReLU states to get bounds
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Basic Ideas Behind RecurlJac

@ Define Y1) = W(2)Z(1)W(1), element-wise bound: U() < vy < L(l),

where
@ _ 1 1 1 _ 70 a _ 1 -1
W' = [2 1} YW= {0 ? W& = s 1

@ Rule: choose worst case “?" to maximize and minimize each element
o UM —1xix1+1x1x2=3

oL(II%:1><0><1+1><0><2:0
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Basic Ideas Behind RecurlJac

Define Y(1) = W(2)Z(1)W(1), element-wise bound: U(®) < vy < L(l),

where
@ _ 1 1 1 _ 70 a _ 1 -1
W' = [2 1} YW= {0 ? W& = s 1

Rule: choose worst case “?" to maximize and minimize each element
o UM —1xix1+1x1x2=3

L(11221><0><1+1><0><2:0

U =1x0x(-1)+1x1x1=1

LY =1x1x(-1)+1x0x1=-1
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Basic Ideas Behind RecurlJac

Define Y(1) = W(2)Z(1)W(1), element-wise bound: U(®) < vy < L(l),

where
@ _ 1 1 1 _ 70 a _ 1 -1
W' = [2 1} YW= {0 ? W& = s 1

Rule: choose worst case “?" to maximize and minimize each element
o UM —1xix1+1x1x2=3

L(II%:1><0><1+1><0><2:0

U =1x0x(-1)+1x1x1=1

LY =1x1x(-1)+1x0x1=-1

31 0 -1
(1) — (1) —
il T R
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Basic Ideas Behind RecurJac - The Next Layer

o Define Y2 = W)y element-wise bound: UM < Y®) < L),
U@ < Y@ < L®) where

70 0 -1 3 1
@ -1 5@ = Ch W _
w®=[1 1] ¥ _{0 ?} L _{0 2} u _{4 J

@ Rule: choose worst case “?" and the worst case numbers from U()
and L®) to maximize and minimize each element.

@ For example:
UP) = 1% {1.0} x [0,3] + (1) x {1.0} x [0,4]

=1x1x34+(-1)x0x0
=3
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Basic Ideas Behind RecurJac - The Next Layer

o Define Y2 = W)y element-wise bound: UM < Y®) < L),
U@ < Y@ < L®) where

70 0 -1 3 1
@ -1 5@ = Ch W _
w®=[1 1] ¥ _{0 ?} L _{0 2} u _{4 J

@ Rule: choose worst case “?" and the worst case numbers from U()
and L®) to maximize and minimize each element.

@ For example:

UP) =1 x {1.0} x [0,3] + (~1) x {1.0} x [0,4]
=1x1x34+(-1)x0x0
=3

@ This is the “Fast-Lip" algorithm (Weng and Zhang et al., ICML 2018)
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Basic Ideas Behind RecurJac - The Next Layer

o Define Y2 = W) (2)¥() element-wise bound: UM < Y@ < (),
U@ <Y® < L@, where

70 0 -1 3 1
®_n -1 @ = . M =
wE=01 ] ¢ —{0 ?} - —{0 2} v —{4 1}

@ Rule: choose worst case “?” and the worst case numbers from U()
and L®) to maximize and minimize each element.

@ Important observation: Lgli =0, Lg% =0, so Ygll) >0, Ygll) >0

@ In this case, no matter what the values Yﬁ, Ygll) take, "7" are always

fixed to ¥(2) = B 8} compute Uﬁ
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Basic Ideas Behind RecurJac - The Next Layer

o Define Y2 = W) (2)¥() element-wise bound: UM < Y@ < (),
U@ <Y® < L@, where

70 0 -1 3 1
®_n -1 @ = . M =
wE=01 ] ¢ —{0 ?} - —{0 2} v —{4 1}

@ Rule: choose worst case “?” and the worst case numbers from U()
and L®) to maximize and minimize each element.

@ Important observation: Lgli =0, Lg% =0, so Ygll) >0, Ygll) >0
(1

@ In this case, no matter what the values Y; f Ygll) take, "7" are always

fixed to ¥(2) = B 8} compute Uﬁ

0 Y2 — ﬁ 8} with uncertain “?"s removed!
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Basic Ideas Behind RecurJac - Bound Propagation

@ Now propagate to the previous layer to refine the bound
o YO —wBx@y®) — wlz@w@x@®w®)
o define W = W (WR) where
10 11
(3) — _ (2 _ ) _

wo - 1 o= (80 we - [L ]

@ Now run RecurJac on the equivalent 2-layer network W:(l?:)Z(l)W:(}l) and
obtain its upper bound, which becomes Uﬁ

e this upper bound (calculated as 1) is tighter than 3 (by Fast-Lip)
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Basic Ideas Behind RecurJac - Bound Propagation

@ Now propagate to the previous layer to refine the bound
o YO — W@y — wBT@w@ s wyw()
o define W = WL @WE) where

1 0 11
(€) _ (2 — (2 _
wo - 1 o= (80 we - [} ]

@ Now run RecurJac on the equivalent 2-layer network v"vf}z(l)w:(}l) and

(2)

obtain its upper bound, which becomes Uy’

@ For network with / layers, RecurJac will form equivalent networks with
I — 1 layers and call the RecurJac procedure recursively for bound
refinement, until reaching the base case of a 2-layer network
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Basic Ideas Behind RecurlJac

Algorithm 1 ComputeLU (compute the lower and upper Jacobian bounds)

Require: W) bounds {(]:4(’1:’,U("‘),W(”)}iHEIJr17 {l'(i’l),u’(i’l)}iwl
1: if | = H then
2 LD = U= =w®
3: elseif [ = H — 1 then
4: Compute L= from (10), U from (11)
5: else if 1 <l < H —1 then s
6: Compute WD from (17), W(H'1 D from (18)
7 (L7170, ) = ComputeLU( W WL ALEAUEO WO (UG G-I
8:
9

. = Recursive call
: (AUCLD) = ComputeLU( WD ((LED U WO m,)

10: = Recursive call

11: Compute LEDE from (14), UCD# from (15)

12: LD = LEDE L L(-t-1-0)

13 UCH = ygEhd gt

14: end if

15: return L(-9, U(-H

(LGD) g1y H

For computing the Jacobian bounds:
e Fast-Lip similar to IBP (interval bound propagation)
@ RecurJac similar to symbolic propagation (Fast-Lin, Neurify, CROWN)
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How does RecurJac perform?

MNIST, 10 layer, LeakyReLU CIFAR, 10 layer, ReLU

—
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153 [

5 &

2 10° ~ - FastLip 2 108 ~—- FastLip

jg 105 —— RecurJac-B g —— RecurJac-B

g —— RecurJac-F0O g 106 —— RecurJac-F0

Q 10* —— Recurjac-F1 Q —— RecurJac-F1

Z10° Global (naive) = 10* Global (naive)

§ = Global (ours) 2 | == Global (ours)

£10 £

= 100 1072 10! 100 = 103 102 10-! 10°
Radius of /. ball Radius of .. ball

@ Bounds on local Lipschitz constants are a few magnitudes better than
Fast-Lip

@ Bounds on global Lipschitz constants are a few magnitudes better than
the product of operator norms for each layer
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How does RecurJac perform?

RecurJac can find larger (thus better) robustness lower bound than previous
Lipschitz constant bound based method, Fast-Lip.

Robustness
o

0 lower bnd minimum  upper bnd
(trivial lower bnd) (attack agnostic) distortion (attack algo)

Table: Comparison of the lower bounds for ¢, distortion found by RecurJac and
FastLip on models with adversarial training with PGD perturbation € = 0.3 for two
models and 3 targeted attack classes, averaged over 100 images.

runner-up target random target least-likely target
Network | Method | Undefended Adv. Training | Undefended Adv. Training | Undefended Adv. Training
MNIST | RecurJac 0.02256 0.11573 0.02870 0.13753 0.03205 0.16153
3-layer FastLip 0.01802 0.09639 0.02374 0.11753 0.02720 0.14067
MNIST | RecurJac 0.02104 0.07350 0.02399 0.08603 0.02519 0.09863
4-layer FastLip 0.01602 0.04232 0.01882 0.05267 0.02018 0.06417
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RecurJac vs. CROWN vs. Fast-Lin vs. Fast-Lip

Baselines:

e RecurJac (Zhang et al., AAAI 2019): improved Jacobian bound with
recursive bound refinements

@ CROWN (Zhang and Weng et al., NIPS 2018): Improved Fast-Lin,
general upper and lower bounds, general activation functions (sigmoid,
etc)

e Fast-Lin (Weng and Zhang et al., ICML 2018): linear upper and lower
bounds with the same slope for ReLU, similar to Neurify (w/o BaB)

e Fast-Lip (Weng and Zhang et al., ICML 2018): first Jacobian bound
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RecurJac vs. CROWN vs. Fast-Lin vs. Fast-Lip

@ MNIST MLP with 2-8 layers, ReLU, 100 neurons per layer

@ reported numbers are the certified lower bounds of minimum
adversarial distortions (larger is better), averaged over 100 images

@ input distortion is bounded by ¢1, £» or £, norms

£, norm £ norm £, norm

s —— RecurJac —— RecurJac —— RecurJac
g Fast-Lip Fast-Lip § 0.06 Fast-Lip
= 6 —— CROWN —— CROWN | = —— CROWN
< i Sooal o N
: ----- Fast-Lin > 0.04
o o | T~
c4 [
s TS g
Z Z0.02
2
2 4 6 8 2 4 6 8 2 6 8
Number of layers Number of layers Number of layers
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Other Verification Situations

@ RecurJac can be used for verifying NN properties involving gradients or
Jacobian, for example, the “first order” verification problem below:

min ¢! Vf(x)
st. xe$
y =f(x)

@ But so far | haven't demonstrated a practical use of this (yet)
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@ Bounds on Jacobian can be useful for applications beyond verification

@ Local Lipschitz constant is also a surrogate to many other problems
(e.g., Wasserstein GANs, some generalization bounds, etc)

@ Gain understanding on optimization landscape
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Beyond Verification - Optimization Landscape

@ A stationary point in optimization is a x such that Vf(x) = 0.
o Gradient based optimization converges to stationary points (global
minima, local minima or saddle points).

@ RecurJac bound gives us:
Lix <[V <U; 0 Y, k.

o IfL;, >0o0rU;, <0, we know that [Vf;(x)]x never becomes 0 for all
x € S, so no stationary points exist inside S
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Beyond Verification - Optimization Landscape

Using RecurJac, we can get a rough idea on optimization landscape w.r.t.

input by looking at the radius where no stationary points exist:

MNIST, 2-10 layers, LeakyReLU

1.50 0.10
«1.25 .
o 0.08 0:3
= 1.00 =5
g 0.06 8
~ 8
< 0.75 -
o o
bt 0.04 5
2 0.50 E|
s 3
~ 0.25 0.02 4

0.00 0.00

2 4 8 10
Network depth

Figure: The largest radius R* (centered at a test example) within which no
stationary point exists, for network with different depths (2-10 layers), averaged

over 100 test examples

Interestingly, for network of 2 layers, the radius is infinity.
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Thank You

Thank You!
Questions?

Slides, paper and source code available at
github.com/huanzhangl2/RecurJac
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