
RecurJac: An Efficient Recursive Algorithm for
Bounding Jacobian Matrix of Neural Networks

Huan Zhang (UCLA)
Pengchuan Zhang (Microsoft Research)

Cho-Jui Hsieh (UCLA)

Slides, paper and code: github.com/huanzhang12/RecurJac

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 1 / 30

github.com/huanzhang12/RecurJac
github.com/huanzhang12/RecurJac

Verification of Neural Networks

Inference in neural networks

x1

x2

f 1(x1 ,x2)

f 2(x1 , x2)
x⃗=(x1,x 2)A point

Output is a
single point

Input
neurons

Output
neuronsHidden

neurons

Forward Propagation

y = f (x)

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 2 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks

When the input is not a single point...

x1

x2

f 1(x1 ,x2)

f 2(x1 , x2)

Input
neurons

Output
neuronsHidden

neurons

Forward Propagation

x⃗

Any x in a set
(e.g. a box)

Output is a set
(all reachable
points)

x ∈ S

y ∈ {f (x), x ∈ S}

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 3 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks

The verification problem (e.g., margin between two classes)

f 1(x⃗)

f 2(x⃗)
Does f 1(x⃗)> f 2(x⃗) always hold?

Design an objective g for it

min g(y)

s.t. x ∈ S

y ∈ {f (x), x ∈ S}

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 4 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks

Solving the verification problem exactly

f 1(x⃗)

f 2(x⃗)
objective g≝ f 1(x⃗)− f 2(x⃗)>0

min g(y)

s.t. x ∈ S

y ∈ {f (x), x ∈ S}

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 5 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks - Convex Relaxations

Solving the verification problem through convex relaxations

f 1(x⃗)

f 2(x⃗)
Does f 1(x⃗)> f 2(x⃗) always hold?

min g(y)

s.t. x ∈ S

y ∈ Convex({f (x), x ∈ S})

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 6 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks - Convex Relaxations

Solving the verification problem through convex relaxations (ideal case)

f 1(x⃗)

f 2(x⃗)
objective g≝ f 1(x⃗)− f 2(x⃗)>0

min g(y)

s.t. x ∈ S

y ∈ Convex({f (x), x ∈ S})

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 7 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks - Convex Relaxations

Solving the verification problem through convex relaxations (the reality)

f 1(x⃗)

f 2(x⃗)
objective g≝ f 1(x⃗)− f 2(x⃗)<0

Sound, but not complete

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 8 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks - A Unified Framework

Original problem:

min g(y)

s.t. x ∈ S

y ∈ {f (S)}

Convex relaxed:

min g(y)

s.t. x ∈ S

y ∈ Convex({f (S)})

Many verification methods can be seen in a unified framework as
convex relaxations of the original non-convex verification problem

“A convex relaxation barrier to tight robustness verification of neural networks”, Hadi Salman,

Greg Yang, Huan Zhang, Cho-Jui Hsieh and Pengchuan Zhang, arXiv 1902.08722

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 9 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks - “Greedy” Solvers

Even solving the convex-relaxed problem can still be expensive; many
“greedy” solvers are proposed (Neurify w/o BaB, CROWN, Fast-Lin,
DeepZ, DeepPoly)

These greedy solvers give linear outer bounds of NN w.r.t. all inputs
x0 + ∆x ∈ S : AL∆x + bL ≤ f (x0 + ∆x) ≤ AU∆x + bU
For example, one dimensional case, `∞ ball at x0 with radius ε:

x0ε

Linear upper bound

Linear lower bound

“A convex relaxation barrier to tight robustness verification of neural networks”, Hadi Salman,

Greg Yang, Huan Zhang, Cho-Jui Hsieh and Pengchuan Zhang, arXiv 1902.08722

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 10 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks

In RecurJac, we use a different kind of bound: the Local Lipschitz constant
based verification bound

ε x0
Slope ±L: Local Lipschitz constant x0ε

Linear upper bound

Linear lower bound

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 11 / 30

github.com/huanzhang12/RecurJac

Local Lipschitz Constant based Bounds

A local Lipschitz constant is a scalar Lp,S that satisfies

|g(x1)−g(x2)| ≤ Lp,S‖x1−x2‖p, for all x1, x2 ∈ S := {x |‖x − x0‖p ≤ ε}

We can lower bound a function g(x) for all x ∈ S by its local Lipschitz
constant Lp,S :

g(x) ≥ g(x0)− Lp,S‖x − x0‖p
For example, g(x) = f1(x)− f2(x) (margin) as we showed before

x0
ε

objective g (x)= f 1(x)− f 2(x)

x

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 12 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks

Lipschitz constant is closely related to gradients. We thus look into the
back-propagation in neural networks

x1

x2

f 1(x1 ,x2)

f 2(x1 ,x2)J= [
∂ f 1
∂ x1

∂ f 1
∂ x2

∂ f 2
∂ x1

∂ f 2
∂ x2

]
x⃗=(x1,x 2)A point

Output is a
single point

Forward Propagation

Backward Propagation

Jacobian matrix
w.r.t. input

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 13 / 30

github.com/huanzhang12/RecurJac

Verification of Neural Networks

Verification problem for Jacobian/Gradients

x1

x2

f 1(x1 ,x2)

f 2(x1 , x2)

L⩽J⩽U

x⃗

Any x inside
the box

Output is a set

Jacobian has
element-wise
upper/lower bounds

[L1,1 L1,2L2,1 L2,2]≤ [
∂ f 1
∂ x1

∂ f 1
∂ x2

∂ f 2
∂ x1

∂ f 2
∂ x2

]≤[U1,1 U1,2U 2,1 U 2,2]

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 14 / 30

github.com/huanzhang12/RecurJac

The RecurJac Algorithm

RecurJac gives element-wise bounds U and L for Jacobian J := ∇x f (x)
of input x , not network weights w (not a bound for ∇w f (x ,w))

RecurJac can be applied to networks with any common activation
functions (tanh, sigmoid, etc), not limited to ReLU

RecurJac is polynomial time – its time complexity is O(H2n3) for a
H-layer network with n neurons per layer

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 15 / 30

github.com/huanzhang12/RecurJac

From Jacobian Bounds to Local Lipschitz Constant

Local Lipschitz constant can be seen as the maximum induced p−norm
of Jacobian matrix for all x ∈ S :

Lp,S = max
x∈S
‖J‖p

With U and L where L ≤ ∇f (x) ≤ U for x ∈ S , an (upper bound of)
Local Lipschitz constant can be easily obtained.

Define matrix M with each element Mi ,j = max(|Li ,j |, |Ui ,j |), then

Lp,S ≤ ‖M‖p

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 16 / 30

github.com/huanzhang12/RecurJac

The RecurJac Algorithm

For illustration, for a 3-layer neural network with ReLU activation σ:

f (x) = W(3)σ(W(2)σ(W(1)x))

where

W(3) =
[
1 −1

]
W(2) =

[
1 1
2 1

]
W(1) =

[
1 −1
2 1

]
the element {j , k} in Jacobian matrix can be written as:

Jj ,k = [∇fj(x)]k = W
(3)
j ,: Σ(2)W(2)Σ(1)W

(1)
:,k

where

Σ(2) =

[
? 0
0 ?

]
Σ(1) =

[
? 0
0 ?

]
“?” can be 0 or 1, reflecting the state of a ReLU neuron

We need to consider the worst case ReLU states to get bounds

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 17 / 30

github.com/huanzhang12/RecurJac

The RecurJac Algorithm

For illustration, for a 3-layer neural network with ReLU activation σ:

f (x) = W(3)σ(W(2)σ(W(1)x))

where

W(3) =
[
1 −1

]
W(2) =

[
1 1
2 1

]
W(1) =

[
1 −1
2 1

]
the element {j , k} in Jacobian matrix can be written as:

Jj ,k = [∇fj(x)]k = W
(3)
j ,: Σ(2)W(2)Σ(1)W

(1)
:,k

where

Σ(2) =

[
? 0
0 ?

]
Σ(1) =

[
? 0
0 ?

]
“?” can be 0 or 1, reflecting the state of a ReLU neuron

We need to consider the worst case ReLU states to get bounds

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 17 / 30

github.com/huanzhang12/RecurJac

Basic Ideas Behind RecurJac

Define Y(1) = W(2)Σ(1)W(1), element-wise bound: U(1) ≤ Y(1) ≤ L(1),
where

W(2) =

[
1 1
2 1

]
Σ(1) =

[
? 0
0 ?

]
W(1) =

[
1 −1
2 1

]
Rule: choose worst case “?” to maximize and minimize each element

U
(1)
1,1 = 1× 1× 1 + 1× 1× 2 = 3

L
(1)
1,1 = 1× 0× 1 + 1× 0× 2 = 0

U
(1)
1,2 = 1× 0× (−1) + 1× 1× 1 = 1

L
(1)
1,2 = 1× 1× (−1) + 1× 0× 1 = −1

U(1) =

[
3 1
4 1

]
L(1) =

[
0 −1
0 −2

]

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 18 / 30

github.com/huanzhang12/RecurJac

Basic Ideas Behind RecurJac

Define Y(1) = W(2)Σ(1)W(1), element-wise bound: U(1) ≤ Y(1) ≤ L(1),
where

W(2) =

[
1 1
2 1

]
Σ(1) =

[
? 0
0 ?

]
W(1) =

[
1 −1
2 1

]
Rule: choose worst case “?” to maximize and minimize each element

U
(1)
1,1 = 1× 1× 1 + 1× 1× 2 = 3

L
(1)
1,1 = 1× 0× 1 + 1× 0× 2 = 0

U
(1)
1,2 = 1× 0× (−1) + 1× 1× 1 = 1

L
(1)
1,2 = 1× 1× (−1) + 1× 0× 1 = −1

U(1) =

[
3 1
4 1

]
L(1) =

[
0 −1
0 −2

]

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 18 / 30

github.com/huanzhang12/RecurJac

Basic Ideas Behind RecurJac

Define Y(1) = W(2)Σ(1)W(1), element-wise bound: U(1) ≤ Y(1) ≤ L(1),
where

W(2) =

[
1 1
2 1

]
Σ(1) =

[
? 0
0 ?

]
W(1) =

[
1 −1
2 1

]
Rule: choose worst case “?” to maximize and minimize each element

U
(1)
1,1 = 1× 1× 1 + 1× 1× 2 = 3

L
(1)
1,1 = 1× 0× 1 + 1× 0× 2 = 0

U
(1)
1,2 = 1× 0× (−1) + 1× 1× 1 = 1

L
(1)
1,2 = 1× 1× (−1) + 1× 0× 1 = −1

U(1) =

[
3 1
4 1

]
L(1) =

[
0 −1
0 −2

]

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 18 / 30

github.com/huanzhang12/RecurJac

Basic Ideas Behind RecurJac - The Next Layer

Define Y(2) = W(3)Σ(2)Y(1), element-wise bound: U(1) ≤ Y(1) ≤ L(1),
U(2) ≤ Y(2) ≤ L(2), where

W(3) =
[
1 −1

]
Σ(2) =

[
? 0
0 ?

]
L(1) =

[
0 −1
0 −2

]
U(1) =

[
3 1
4 1

]
Rule: choose worst case “?” and the worst case numbers from U(1)

and L(2) to maximize and minimize each element.

For example:

U
(2)
1,1 = 1× {1, 0} × [0, 3] + (−1)× {1, 0} × [0, 4]

= 1× 1× 3 + (−1)× 0× 0

= 3

This is the “Fast-Lip” algorithm (Weng and Zhang et al., ICML 2018)

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 19 / 30

github.com/huanzhang12/RecurJac

Basic Ideas Behind RecurJac - The Next Layer

Define Y(2) = W(3)Σ(2)Y(1), element-wise bound: U(1) ≤ Y(1) ≤ L(1),
U(2) ≤ Y(2) ≤ L(2), where

W(3) =
[
1 −1

]
Σ(2) =

[
? 0
0 ?

]
L(1) =

[
0 −1
0 −2

]
U(1) =

[
3 1
4 1

]
Rule: choose worst case “?” and the worst case numbers from U(1)

and L(2) to maximize and minimize each element.

For example:

U
(2)
1,1 = 1× {1, 0} × [0, 3] + (−1)× {1, 0} × [0, 4]

= 1× 1× 3 + (−1)× 0× 0

= 3

This is the “Fast-Lip” algorithm (Weng and Zhang et al., ICML 2018)

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 19 / 30

github.com/huanzhang12/RecurJac

Basic Ideas Behind RecurJac - The Next Layer

Define Y(2) = W(3)Σ(2)Y(1), element-wise bound: U(1) ≤ Y(1) ≤ L(1),
U(2) ≤ Y(2) ≤ L(2), where

W(3) =
[
1 −1

]
Σ(2) =

[
? 0
0 ?

]
L(1) =

[
0 −1
0 −2

]
U(1) =

[
3 1
4 1

]
Rule: choose worst case “?” and the worst case numbers from U(1)

and L(2) to maximize and minimize each element.

Important observation: L
(1)
1,1 = 0, L

(1)
2,1 = 0, so Y

(1)
1,1 ≥ 0, Y

(1)
2,1 ≥ 0

In this case, no matter what the values Y
(1)
1,1, Y

(1)
2,1 take, “?” are always

fixed to Σ(2) =

[
1 0
0 0

]
compute U

(2)
1,1

Σ(2) =

[
1 0
0 0

]
with uncertain “?”s removed!

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 19 / 30

github.com/huanzhang12/RecurJac

Basic Ideas Behind RecurJac - The Next Layer

Define Y(2) = W(3)Σ(2)Y(1), element-wise bound: U(1) ≤ Y(1) ≤ L(1),
U(2) ≤ Y(2) ≤ L(2), where

W(3) =
[
1 −1

]
Σ(2) =

[
? 0
0 ?

]
L(1) =

[
0 −1
0 −2

]
U(1) =

[
3 1
4 1

]
Rule: choose worst case “?” and the worst case numbers from U(1)

and L(2) to maximize and minimize each element.

Important observation: L
(1)
1,1 = 0, L

(1)
2,1 = 0, so Y

(1)
1,1 ≥ 0, Y

(1)
2,1 ≥ 0

In this case, no matter what the values Y
(1)
1,1, Y

(1)
2,1 take, “?” are always

fixed to Σ(2) =

[
1 0
0 0

]
compute U

(2)
1,1

Σ(2) =

[
1 0
0 0

]
with uncertain “?”s removed!

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 19 / 30

github.com/huanzhang12/RecurJac

Basic Ideas Behind RecurJac - Bound Propagation

Now propagate to the previous layer to refine the bound

Y(2) = W(3)Σ(2)Y(1) = W(3)Σ(2)W(2)Σ(1)W(1)

define W̃(2) = W(3)Σ(2)W(2) where

W(3) =
[
1 −1

]
Σ(2) =

[
1 0
0 0

]
W(2) =

[
1 1
2 1

]
Now run RecurJac on the equivalent 2-layer network W̃

(2)
1,: Σ(1)W

(1)
:,1 and

obtain its upper bound, which becomes U
(2)
1,1

this upper bound (calculated as 1) is tighter than 3 (by Fast-Lip)

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 20 / 30

github.com/huanzhang12/RecurJac

Basic Ideas Behind RecurJac - Bound Propagation

Now propagate to the previous layer to refine the bound

Y(2) = W(3)Σ(2)Y(1) = W(3)Σ(2)W(2)Σ(1)W(1)

define W̃(2) = W(3)Σ(2)W(2) where

W(3) =
[
1 −1

]
Σ(2) =

[
1 0
0 0

]
W(2) =

[
1 1
2 1

]
Now run RecurJac on the equivalent 2-layer network W̃

(2)
1,: Σ(1)W

(1)
:,1 and

obtain its upper bound, which becomes U
(2)
1,1

For network with l layers, RecurJac will form equivalent networks with
l − 1 layers and call the RecurJac procedure recursively for bound
refinement, until reaching the base case of a 2-layer network

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 20 / 30

github.com/huanzhang12/RecurJac

Basic Ideas Behind RecurJac

For computing the Jacobian bounds:

Fast-Lip similar to IBP (interval bound propagation)

RecurJac similar to symbolic propagation (Fast-Lin, Neurify, CROWN)

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 21 / 30

github.com/huanzhang12/RecurJac

How does RecurJac perform?

10 3 10 2 10 1 100

Radius of ball

102

103

104

105

106

107

108

Li
ps

ch
itz

 C
on

st
an

t U
pp

er
 B

ou
nd

MNIST, 10 layer, LeakyReLU

FastLip
RecurJac-B
RecurJac-F0
RecurJac-F1
Global (naive)
Global (ours)

10 3 10 2 10 1 100

Radius of ball

104

106

108

1010

1012

Li
ps

ch
itz

 C
on

st
an

t U
pp

er
 B

ou
nd

CIFAR, 10 layer, ReLU

FastLip
RecurJac-B
RecurJac-F0
RecurJac-F1
Global (naive)
Global (ours)

Bounds on local Lipschitz constants are a few magnitudes better than
Fast-Lip

Bounds on global Lipschitz constants are a few magnitudes better than
the product of operator norms for each layer

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 22 / 30

github.com/huanzhang12/RecurJac

How does RecurJac perform?

RecurJac can find larger (thus better) robustness lower bound than previous
Lipschitz constant bound based method, Fast-Lip.

Table: Comparison of the lower bounds for `∞ distortion found by RecurJac and
FastLip on models with adversarial training with PGD perturbation ε = 0.3 for two
models and 3 targeted attack classes, averaged over 100 images.

runner-up target random target least-likely target

Network Method Undefended Adv. Training Undefended Adv. Training Undefended Adv. Training

MNIST
3-layer

RecurJac 0.02256 0.11573 0.02870 0.13753 0.03205 0.16153
FastLip 0.01802 0.09639 0.02374 0.11753 0.02720 0.14067

MNIST
4-layer

RecurJac 0.02104 0.07350 0.02399 0.08603 0.02519 0.09863
FastLip 0.01602 0.04232 0.01882 0.05267 0.02018 0.06417

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 23 / 30

github.com/huanzhang12/RecurJac

RecurJac vs. CROWN vs. Fast-Lin vs. Fast-Lip

Baselines:

RecurJac (Zhang et al., AAAI 2019): improved Jacobian bound with
recursive bound refinements

CROWN (Zhang and Weng et al., NIPS 2018): Improved Fast-Lin,
general upper and lower bounds, general activation functions (sigmoid,
etc)

Fast-Lin (Weng and Zhang et al., ICML 2018): linear upper and lower
bounds with the same slope for ReLU, similar to Neurify (w/o BaB)

Fast-Lip (Weng and Zhang et al., ICML 2018): first Jacobian bound

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 24 / 30

github.com/huanzhang12/RecurJac

RecurJac vs. CROWN vs. Fast-Lin vs. Fast-Lip

MNIST MLP with 2-8 layers, ReLU, 100 neurons per layer

reported numbers are the certified lower bounds of minimum
adversarial distortions (larger is better), averaged over 100 images

input distortion is bounded by `1, `2 or `∞ norms

2 4 6 8
Number of layers

2

4

6

8

Av
er

ag
e
ℓ 1

 n
or

m

ℓ1 norm
RecurJac
Fast-Lip
CROWN
Fast-Lin

2 4 6 8
Number of layers

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e
ℓ 2

 n
or

m
ℓ2 norm

RecurJac
Fast-Lip
CROWN
Fast-Lin

2 4 6 8
Number of layers

0.02

0.04

0.06

Av
er

ag
e
ℓ ∞

 n
or

m

ℓ∞ norm
RecurJac
Fast-Lip
CROWN
Fast-Lin

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 25 / 30

github.com/huanzhang12/RecurJac

Other Verification Situations

RecurJac can be used for verifying NN properties involving gradients or
Jacobian, for example, the “first order” verification problem below:

min c>∇f (x)

s.t. x ∈ S

y = f (x)

But so far I haven’t demonstrated a practical use of this (yet)

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 26 / 30

github.com/huanzhang12/RecurJac

Beyond Verification

Bounds on Jacobian can be useful for applications beyond verification

Local Lipschitz constant is also a surrogate to many other problems
(e.g., Wasserstein GANs, some generalization bounds, etc)

Gain understanding on optimization landscape

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 27 / 30

github.com/huanzhang12/RecurJac

Beyond Verification - Optimization Landscape

A stationary point in optimization is a x such that ∇f (x) = 0.
Gradient based optimization converges to stationary points (global
minima, local minima or saddle points).

RecurJac bound gives us:

Lj ,k ≤ [∇fj(x)]k ≤ Uj ,k ∀j , k .

If Lj ,k > 0 or Uj ,k < 0, we know that [∇fj(x)]k never becomes 0 for all
x ∈ S , so no stationary points exist inside S

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 28 / 30

github.com/huanzhang12/RecurJac

Beyond Verification - Optimization Landscape

Using RecurJac, we can get a rough idea on optimization landscape w.r.t.
input by looking at the radius where no stationary points exist:

2 4 6 8 10
Network depth

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
ad

iu
s

of

2
ba

ll,
 R

* 2

2

0.00

0.02

0.04

0.06

0.08

0.10

R
ad

iu
s

of

 b
al

l,
R

*

MNIST, 2-10 layers, LeakyReLU

Figure: The largest radius R∗ (centered at a test example) within which no
stationary point exists, for network with different depths (2-10 layers), averaged
over 100 test examples

Interestingly, for network of 2 layers, the radius is infinity.
RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 29 / 30

github.com/huanzhang12/RecurJac

Thank You

Thank You!

Questions?

Slides, paper and source code available at
github.com/huanzhang12/RecurJac

RecurJac (Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh) github.com/huanzhang12/RecurJac 30 / 30

github.com/huanzhang12/RecurJac
github.com/huanzhang12/RecurJac

